
TEMPORAL TOPOLOGICAL RELATIONSHIPS OF CONVEX SPACES
IN SPACE SYNTAX THEORY

H. Rezayan a, *, A. U. Frank b, F. Karimipour a, M. R. Delavar a

a Dept. of Surveying and Geomatic Eng., Eng. Faculty, University of Tehran, Tehran, Iran, - (rezayan, karimipr,

mdelavar)@ut.ac.ir
b Dept. of Geo-Information E-127, Technische University Wien, Gusshausstr. 27-29, A-1040 Vienna Austria -

frank@geoinfo.tuwien.ac.at

KEY WORDS: Space Syntax theory, GI Science, GI theory, Category theory, Convex Space, and Graph Topology.

ABSTRACT:

GI science development has to be served by an effective GI theory. Development of GI theory requires clear characterisation of GI
domain to demonstrate real world effectively and also provide a framework for delineation of rational hypotheses. This requirement
is met in recent researches through using mathematics as the basis of GI theory. Axiomatic set theory and formal logic are the
foundations of this mathematical approach to study the structures, changes, and spaces in GI domain. While hypotheses require to be
modelled into logical structures and be prepared to be evaluated, computer science is also adopted as another foundation of GI
theory. One of the recent trends in GI theory development is characterizing the real world as functions and using category theory and
algebras as the mathematical basis for handling realities and developing hypotheses. Development of unique and integrated basis for
handling static and dynamic GI concepts is one of the hypotheses which are studied in some of these researches. Their outcomes
illustrate theoretic feasibility of defining morphisms, known as functors or time liftings, between static and dynamic domains. The
time lifting approach was evaluated for some GI models, however, more different models still have to be evaluated. This paper
studied time lifting for a topological characterization of convex spaces in real world which is described by Space Syntax theory. This
theory illustrates human settlements and societies as a strongly connected space-time relational system between convex spaces. Such
a system is represented by a connectivity graph. Also some morphologic analyses are defined for deriving the graph's properties
which illustrate how the space and time are overcome by the relational systems and convex spaces. Investigation of temporality in
Space Syntax theory has shown that more dynamicity exist among activities in local scale. Then the specific problem of this paper is
defined as modelling integrated static and dynamic analyses of an activity based scenario in local scale and studying how effective
these activities overcome space and time. The derived model is implemented for analysing a simulated urban public transportation
system using a functional programming language known as Haskell. The successful implementation validated the time lifting
approach for topological models of convex spaces, as the main aim of this paper. Besides, questions are emerged about mixed usage
of static and dynamic data and level of computation's time and memory growth rates.

* Corresponding author.

1. INTRODUCTION

Is it right that over 80 percent of information has spatial
factors? Successive introduction of spatial rules as important
foundations of theories in different sciences strengthens the
rightness of this claim. For example in architecture science,
Space Syntax theory is emerged which illustrates the
importance of constructive roles of space in creating societies
and proposes that the social construction of space in human
settlements is mediated by spatial laws. Then it would be
questioned whether the spatial laws, derived out in different
sciences independently, are consistent and could they be
integrated together?
GI theory is served to provide a foundation to support
derivation of consistent and integrable spatial laws and theories.
GI scientists are developing GI theory through formalistic
utilization of mathematics for studying structures, changes, and
spaces. This mathematical trend is generally based on axiomatic
set theory and formal logic. This trend is also accompanied with
addressing the derived concepts of GI theory in computer
science.

Then it would be truly supposed that GI concepts which have
definite mathematical and algebraic structures (like topology)
could take advantages of GI theory at once, while other GI
concepts need to be redefined. Time is one of the critical
concepts have to be redefined in GI theory. Time is inherently
linked to space (Egenhofer and Mark, 1995); then, provision of
an integrated basis for dealing with static and dynamic concepts
is inevitable.
This paper is following functionalists' approach, especially the
results provided by Frank and his colleagues, for developing GI
theory by adopting category theory and algebras for time
formalization. This formalization is used for evaluation of
spatio-temporal concepts integration in Space Syntax theory.
These concepts are resulted from investigation of convex
spaces' topological relationships in human settlements.
The definitions illustrated in this paper are implemented into a
functional programming language known as Haskell. These are
discriminated by adding a " > " symbol to their beginnings.

gruber
Textfeld
Rezayan, H., A.U. Frank, Farid Karimipour, and M. R. Delavar. "Temporal Topological Relationships of Convex Spaces in Space Syntax Theory." Paper presented at the International Symposium on Spatio-Temporal Modeling '05, Beijing, China, 27.-29.08.2005 2005.

The paper is composed of 9 sections. In section 2, Space Syntax
theory is reviewed. Topological properties of this theory and
their morphologic analyses are described in section 3. Then,
temporality in Space Syntax theory is investigated in section 4.
In section 5, formalization of time in GI theory is described.
Section 6 provides a specific problem definition which is then
implemented in section 7 and proceeded to a case study in
section 8. Finally conclusions are provided in section 9.

2. SPACE SYNTAX THEORY

Could our cities be designed according to scientific and rational
laws? Urban design is the process of giving physical design
directions to urban growth, conservation and change. It sits at
the interface between architecture and planning. While
architecture and planning focus on artistic and socio-economic
factors, designing emphasises on physical attributes that usually
restrict its scale of operation to arrangements of streets,
buildings, and landscapes (Batty et al., 1998). Architecture,
design, and planning are suffered from lack of scientific
theories, as existing theories are mostly normative and weakly
analytical (Hillier, 1996).
Space Syntax theory is a spatial theory which attempts to
overcome the mentioned theoretical deficiencies by providing
means through which we could understand human settlements.
This theory is originally illustrated by Hillier and Hanson
(1984) and being used to explore, predict and evaluate the
likely effects of design alternatives. It is especially a theory and
method for description of invariants in built spaces.
Space is a container of relations and interactions (Couclelis,
1992 cited in Jiang et al., 2001). In other words, space is a
configurational entity. Space Syntax theory adopts the concept
of spatial configuration as its foundation for abstraction and
integration of general properties, structures, and transformations
in human settlements and societies (Hillier, 1996).
One of the central concepts of Space Syntax theory is urban
grid. It is the pattern of public space linking the buildings
(Hillier, 2001). Considering the strong role of urban grids in
creating living cities, their relations with movement are usually
investigated. Urban grids are defined as static core elements of
urban systems strongly influence the long term dynamicity of
urban systems and movement, as the strong force that holds the
whole urban system together (Hillier, 2001). Then the relational
systems of societies are strongly connected space-time
relational systems which their individual relations are space-
time relations and events / activities (Hillier and Netto, 2001).
Based on these outcomes, Space Syntax theory provides its
organic definition for a society as an evolutionary abstraction
imposed on space-time reality. In this society, space is acted as
an inverted genotype. It means that the required information to
reproduce cultural patterns of space is found in the spatial
configurations themselves as relations / interactions. Individuals
who make up such an organic society (e.g. built areas and
activities) are clearly well-defined space-time things and the
spaces between individuals are filled up or overcome by the
space-time relational systems. These imply movement in
societies (Hillier and Netto, 2001).
Then it is depicted that the social construction of space in
human settlements is mediated by two kinds of spatial laws:
those by which different ways of placing buildings gave rise to
different spatial configurations (local and conservative); and
those through which different spatial configurations create
different patterns of co-presence amongst people through their
effect on movement (global and generative) (Hillier, 2001).
This conclusion conforms to viewpoint of cognitive perception:

space could be considered at two scales: large and small
(Egenhofer and Mark, 1995). Large scale space is beyond
human perception and cannot be perceived from a single point;
while small-scale space is presumably larger than the human
body, but can be perceived from a single vantage point (Jiang et
al., 2000). In Space Syntax theory, residential and cultural
factors, which are variants, dominate local scale and
commercial and micro-economic factors, which are invariants,
form global scale.
Dealing with invariants, Space Syntax theory introduces a
universal pattern which could be extracted from the space-time
relational systems in global scale. It is known as deformed
wheel pattern (Hillier, 2001). This pattern is firstly used for
explanation of movement. Also the effect of variants on a
society are analyzed studying the level of deformation occurred
in its deformed wheel pattern.
In short, Space Syntax theory defines the relation of space and
society as a two way generic and systematic relation (Hillier,
2001). Cities are defined here as a transformation of space-time
and a transformation of society (Hillier and Netto, 2001). This
theory generates topological formal models for space-time
relational systems of convex spaces in human settlements.
These systems are represented as connectivity graphs and
equipped with effective methods for analyzing their
morphologic properties which are described in Section 3.

3. TOPOLOGICAL RELATIONSHIP OF CONVEX

SPACES IN SPACE SYNTAX THEORY

The mentioned graph representations of societies' relational
systems are generated as follow:

1. Spatial decomposition of spatial configuration into
elementary units of analysis: bounded spaces, convex
spaces and axial lines. These are defined as (Brown, 2001):
− Bounded spaces (typical enclosable rooms) usually

correspond to functional use designations (Figure 1).
− Convex spaces identify the extent of spatial

decomposition and usually correspond with
privatization and localization of space. (Figure 1.a).

− Axial lines as straight lines which identify the extent
of spatial continuity and usually correspond with
flows and globalization of space. They connect all
incidences of convex spaces based on their inter-
visibility. (Figure 1.b).

Figure 1. Example of analysis units' extraction in Space Syntax

theory for a market (Brown, 2001)

a) b)

2. Representing derived analysis units and their
connections as a connectivity graph in which its nodes and
links are respectively the analysis units and their
connections. These graphs are usually big, shallow, non-
dendritic, highly integrated, and everywhere ringy (with a
large number of cycles) rather than tree-like (Hillier and
Netto, 2001). Jiang et. al (2000) illustrates three different
representations for a connectivity graph depending on the
degree of linearity in environment. These are:
− Relatively linear / axial representation, where this

linear property represents the fact that the built
environment is relatively dense, so that the free space
is stretched in one orientation at most points (e.g. a
city, a town, a village or a neighbourhood) (Figure 2).

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4
5

6
7

8
9 10

11
12

13

Figure 2. Axial representation (Jiang et al., 2000)

− Non-linear / convex representation, where the free
space is partitioned into finite number of convex
spaces (e.g. internal layout of a building) (Figure 3).

1

23

4

5
6

7

Figure 3. Convex representation (Jiang et al., 2000)

− Non-linear but with more precise spatial presentation /
grid representation, where the free space is partitioned
into finite number of points which their visual fields
are studied (Figure 4). Visual field is the space wholly
visible from a single vantage point. It is based on the
notion of isovist (Benedikt, 1979).

Figure 4. Grid representation (Jiang et al., 2000)

3. Deriving the graphs morphologic properties:
connectivity, control value, depth, and integrability. These
are defined as follow (Jiang et. al, 2000, Brown, 2001):
− The connectivity value is the number of immediate

neighbours of nodes (1).

 Ci = k (1)

 where Ci = Connectivity of ith node
 k = Immediate neighbours

− The control value of a node expresses the degree to
which the node controls access to its immediate
neighbours, taking into account the number of
alternative connections of these neighbours (2).

 ∑

=

=
k

j j
i C

ctrl
1

1 (2)

 where ctrli = Control value of ith node
 k = Connected nodes to ith node
 Cj = Connectivity of jth node

− The depth value is the smallest number of steps from a
node to the others. It is defined as total depth and
mean depth values (3).

 ∑

=

=
n

j
iji dD

1

 (3)

 MDi = Di/(n-1)

 where Di = Total depth value of ith node
 dij = shortest path between ith and jth node
 n = Number of nodes
 MDi = Mean depth value of ith node

− Integration value is the degree to which a node is

integrated or segregated from the system. A node is
said to be more integrated if all the other nodes can be
reached after traversing a small number of intervening
nodes and less integrated if the necessary number of
intermediate nodes increases. The integration of a
node is measured similar to relative asymmetry as the
average depth of the node to all other nodes (4).

 RAi = 2(MDi – 1)/(n-2) (4)

 where RAi = Relative asymmetry value of ith node

These morphologic analyses are carried out targeting each
analysis units or nodes of the graph against the others. This
could be interpreted as re-arranging the structure of graph based
on a target node. This process is defined as creating a justified
graph (j-graph) for a node. J-graphs are viewpoints of
individuals to society. Justification of a graph is done by putting
the target node at the lowest / root position, where it can be
distinguished explicitly and from which the whole graph can be
seen. The structures of j-graphs are used for visual
interpretation of target nodes properties. While all j-graphs and
the main graph of society are homeomorphic, Space Syntax
theory concludes that individual and society are different ways
of looking at the same thing (Hillier and Netto, 2001).

4. TIME IN SPACE SYNTAX THEORY

Temporality in Space Syntax theory emerges from changes
caused under the notion of movement which is discussed in
section 2. Time here is investigated in two levels of granularity:
global and local. During the life of a city space, it changes
slowly (global scale) and its related activities (interactions and
co-presence) change rapidly (local scale).

4.1 Time in Global Scale

City design is a temporal art. However this temporality can
rarely be explained and controlled as limited sequences.
Moreover the temporal sequence of cities can be reversed,
interrupted, abandoned, and cut across (Lynch, 1986). It is
similar to temporality in biology (Frank, 2005). Space Syntax
theory defines built environments as organic structures too
(Section 2). Therefore, movement at global scale is known as
general movement which is highly governed by invariant rules
like commercial and micro-economic rules (Hillier, 2001).
While that Space Syntax theory deals with space-time as a
genotype (Section 2), the main spatio-temporal question in
global scale would be how a society is reproduced through time
by being realized in space (Hillier and Netto, 2001). The
abstraction emerges here is due to dominance of knowing which
structures are reproduced and overcome space, not dealing with
the structure itself. Then a society is defined as a continuous
space-time entity (Hillier and Netto, 2001).
This notion of temporality and slow changes is adopted with all
three kinds of environment's representation (Section 3),
especially, axial and convex ones.

4.2 Time in Local Scale

In local scale, we face with discrete and freely mobile
individuals who carry out activities. No activity per se
generates fast changes and immediate new patterns of space,
but they have a certain distribution of demands on co-presence
and global movement. When assessing the impact of new
activities on space, what we need to compare is not so much the
contents of these activities but the range of demands they are
likely to make on co-presence (Hiller and Netto, 2001).
The main question of space and time here is how independent
activities of large number of individuals / agents in different
locations create the overall pattern of cities? Two main
specifications of these activities are (Hiller and Netto, 2001):

1. They are movable and do not accumulate into space-
time to create larger forms
2. They are governed by social rules and conventions.

In this scale temporality could be investigated more effectively
in the grid representation of environment where grid points
could represent positions of activities in space and time. Then
the concepts of moving objects could be adopted in Space
Syntax theory for modelling dynamic activities, their
interactions, and co-presences.

5. TIME IN GI SCIENCE

Space and society change each other. While any changes is due
to time and change in socio-economic or natural environment
attracts the attention of societies (esp. the politicians) (Frank,
1998), we should try to effectively formalize and implement
time in GIS. Time and space are inherent, fundamental and
different dimensions of reality in which people live (Frank,
2005; Egenhofer and Mark, 1995).

Despite many efforts and researches carried out for handling
space and time, these two did not advance co-ordinately.
Effective handling of time is still a controversial and
preliminary topic in GI science and technology. Besides lack of
effective integration approaches, GI scientists enumerate
temporal deficiencies as one of the main troublesome issues of
GI science and technology (Frank, 2005). Time handling
problems could be detailed as follow:

• Lack of a comprehensive and basic spatio-temporal
ontology (Frank, 2003).

• Dealing with time as a discrete or partial continuous
property of world while our unique reality (space and
time) is continues and governed by differentiable laws
(Frank, 2003).

• Dominance of analytical approaches, suffered from
limitation of computer numbering systems.

• Underestimation of common behaviours of models
which are used in GI domain (e.g. network, object and
field) that resulted in creation of context-based
temporal viewpoints (Herring et al., 1990).

A general reason for these deficiencies is lack of effective GI
theory. GI theory, like theories in other sciences, would consist
of a formal language and rules concerning valid (simple)
relationships and facts within the language (Frank, 2005). This
theory would be broad and comprehensive enough to cover all
domains of GI science and technology.
After about one decade from introduction of GI science
(Goodchild, 1992) and dealing with GI theory development,
recently, it is hypothesized that mathematics can provide the
required basis of GI theory. Mathematics is treated in GI theory
as study of structures, changes, and spaces (further than figures
and numbers) and used following a formalistic approach, which
is based on axiomatic set theory and formal logic. This
treatment is accompanied with computer science adoption as
the basis for hypotheses implementation and evaluation.
The mentioned trend in GI theory is followed in some of the
recent advancements like:

• Development of the basic form ontology for space
(SNAP) and time (SPAN) by Grenon and Smith
(2004) and their colleagues.

• Development of multi-tier ontology by Frank (2003).
• Development of functional approaches for GI on the

basis of category theory by Herring et al. (1991),
Frank (2005) and his colleagues.

5.1 Functional Approach to GI Theory

How are the interactions in complex real world carrying out
simply? The general answer of functionalists is existence of
abstraction interfaces which absorb complexities of real worlds.
Then the resulted abstract real world could be interacted
extensionally, free from any computation. The entities here
would be relations in real world, or more properly functions.
This viewpoint is employed in different sciences, especially
social sciences, philosophy, and architecture. In GI science, one
of the functional approaches for definition of GI related
interactions is provided by Frank (2003) as the closed loop of
semantics. He described interactions as composition of a series
of functions carry out by agents in real world (Figure 4). These
functions could be expressed as (5):

 Reality→Observation→Modeling→Act→Reality (5)

Figure 4. Closed loop of semantics

The commutative version of the closed loop of semantics is as
follow (6):

 Reality → g → Reality (6)
 ↓ ↑
 Observation → g' → Act

where g = Processes/models in real world
 g' = Processes/models in agent's mind

Input to observation function and output from act function are
the relations / functions from real world.
What is denoted here as g' function is a functional
representation of a GIS. This function could be defined as
composition of a series of functions (7), too, like what is
presented for TIGRIS GIS by Herring et al. (1989).

g' : External Modelling → Conceptual Modelling→ (7)
 Logical Modelling → Physical Modelling

Category theory is introduced by Herring et al. (1989) as the
mathematical basis which could support the functional
representation of GI interactions. This is a mathematical theory
that abstractly (free from semantics) deals with mathematical
structures and relationships between them. It is an attempt to
capture what is commonly found in various classes of related
mathematical structures. Fundamental concepts of category
theory are categories and functors.
A category is a collection of primitive element types, a set of
operations upon those types, and an operator algebra which is
capable of expressing the interaction between operators and
elements (Herring et al., 1989). Considering category C,
element types are objects of category (obj(C)), operations are
morphisms preserve structures known as homomorphisms
(hom(C)), and operator algebra is composition of morphisms.
The associativity of morphisms' composition and existence of
identity morphism are axioms of a category. For example field
category consists of fields as objects and field homomorphism
as its morphisms (8).

 m : G → H (8)
 m(u + v) = m(u) ++ m(v)
 m(u * v) = m(u) ** m(v)

where G and H = Fields like (G, +, *) and (H, ++, **)
 m = Homomorphism function
 u and v = Members of G

A functor is a morphism which associates elements and
operations from one category to another and preserves the
operator algebra (Herring et al., 1989). Functor F from category
C to category D associates to each object x in C an object F(x)
in D and to each morphism f : x → y in C a morphism
F(f) : F(x) → F(y). It also holds identity and composition
properties.
Then a category is itself a type of mathematical structure that its
structure is preserved by functors. This means that category
theory can be described in itself. While many mathematical
theories attempt to study a particular type of structure just by
relating it to another simpler and better understood structure,
category theory used to take ideas to another simpler or even
more complex ones (two-way) by studying the structures and
morphisms. For example, our approach in moving from static to
dynamic domain results in more complixity.
By defining all GI concepts as formal mathematical structures
and their morphisms, GI theory would be formed as a collection
of categories. Then any kinds of transformations and
integrations of GI concepts to each other would be possible,
using morphisms within and among categories.

5.2 Functional Formalization of Time

Considering Cs and Cd as two categories which carry one kind
of mathematical structure in their static and dynamic domains
respectively, a functor from the static category to the dynamic
one can lift us to temporal domain. This functor will take a
function that can be used for static data and generate a function
could be used for dynamic data. This kind of transformation
from static to dynamic domain is usually mentioned as time
lifting. While it is possible to define a unique time lift function,
for simplicity, different time lift functions are illustrated here
(9), using lambda calculus syntax, for functions with 0 to 2
parameters.

> lift0 a = \ t → a (9)
> lift1 op a = \ t → op (a t)
> lift2 op a b = \ t → op (a t) (b t)

where lift0, lift1, and lift2 = Time lift functions
 op = Input function
 a and b = Inputs for op function
 t = Time parameter
 \ = Lambda symbol

For example time lifting of a two parameter function could be
done using the lift2 function (10).

 f : a → b → c (10)

 g : (t→a) →(t→b) →(t→c)
 g = lift2 f

where a, b, and c = Static types
 (t→a) and (t→b) = Dynamic input functions
 (t→c) = Dynamic output functions
example: if f = (+) then
 f 1 2 = 1 + 2 = 3
 g (t + 1) (2t) = 3t + 1
 g 0 = 1; g 1 = 4; g 2 = 7

Then any type of values could be structured as a dynamic one
being defined as a function from time to the value (11)

> Changing v = Time → v (11)

where v = Any type
 Time = Time parameter

These dynamic types could be used in functions, like their static
counterparts, based on polymorphism. However, this depends
upon feasibility of instantiating the dynamic types for classes
used by static types. This process is known as overloading or
ad-hoc polymorphism. After overloading of dynamic types,
further definition of functions could be used for both static and
dynamic types.

5.3 Analytic Issues – Computer Numbering System

As mentioned in section 5, two problems for handling time in
GI science are treating time as a discrete entity and dominance
of analytical approaches. These are outcomes of computers'
float numbering systems bounded-ness. It means that just
limited number of digits can be used for integer and floating
parts of a number. It causes overflowing and round off errors
which subsequently result in continuity problem.
The computing environments supporting lazy evaluation has
solved the problem of overflowing extensionally by validating
definition of infinite series of numbers. Lazy evaluation means
extensional computation of statements and just evaluating
required parts of the statements (12).

> naturals = [1, 2 ..] (12)
> n_5 = take 5 naturals = [1,2,3,4,5]

where naturals = Infinite series of natural numbers

The general solution for round off error problem, which is
proposed by Franklin (1984), is utilization of rational
numbering system. A rational number is a ratio of two integers
usually written as a/b where b is not zero. The set of all rational
numbers is denoted by Q which is a linear, dense subset of real
numbers, and totally ordered. Being a dense subset means that
between any two rationals sits another one (in fact infinitely
many other ones).
So what is the problem of substituting rational field numbering
systems for float numbering systems of computers? Rational
numbers are structured types (like records) and the computing
environment which supposed to used them have to be able two
overload numerical operators and functions for structured data
types. While overloading is just feasible in computing
environments conforms to object oriented architecture, the
existing computing environments are either imperative or do
not support overloading for structured data types, especially for
operators (like =, +, and *).
One of the major outcomes of using rational numbering systems
would be elimination of error generation and propagation in GI
algorithms due to round off error.
By defining a rational type as Ratio Integer, its temporal
counterpart could be defined (13).

> Changing (Ration Integer) = Time → (Ratio Integer) (13)

In continue the following synonyms (14) will be used:

> type RI = Ratio Integer (14)
> type CRI = Changing (Ratio Integer)

The static and dynamic rational types are overloaded over a
Field class contains basic numeric operators (15).

> class Field a where (15)
> (+),(-),(*),(/) : a → a → a

Overloaded instances for static and dynamic types are:

> instance Field (RI) where (16)
> …

> instance Field (CRI) where
> (+) = lift2 (+)
> (-) = lift2 (-)
> (*) = lift2 (*)
> (/) = lift2 (/)

Then any functions, which use these basic operators, would be
valid for both static and dynamic types (17).

> dm : (Field a) ═> a → a → a (17)
> dm a b = (a + b) * (a – b)

example:
> dm 1/2 2/3
> dm (1/2t) (2/3t)

6. PROBLEM DEFINITION

Considering the previously mentioned issues, the aim of this
paper can be restated as "implementing integrated analyses for
static and dynamic topological relationships of convex spaces in
Space Syntax theory using the time lifting approach". Dealing
with this, the grid representation is selected as the basis of
analyses (Section 3). In grid representation rather simpler
approach for deriving convex spaces is provided than the two
other representations, as the vantage points are predefined and
finite (set of regular grid points). These points can be proposed
as potential incidences of convex spaces and their linkages can
be derived by checking their intervisibilities.
Moreover, the grid representation supports more rapid
dynamicity, movement, and changes of activities in local scale
(Section 4.2). Then our problem is limited to intervisibility
analysis in a definite and finite point set which represents
positions of static and dynamic activities. The intervisibility
analysis would be carried out within an underlying static
environment. This static environment consists of passages (e.g.
streets) and barriers (e.g. buildings) which enable or disable
movement and intervisibility.
The resulted connectivity graph will be composed of positions
of static and dynamic activities as nodes and their intervisibility
relations as links.

It is expected that this approach could support analyses of
different kinds of dynamic activities, especially public services
in cities (e.g. transportation, safety, and security), in regards
with evaluating how effective they interact, overcome and
cover space and time.

7. IMPLEMENTATION

The required components for implementation are defined as
follow:

1. dynamic points
2. connectivity graph
3. static environment
4. functions

While rational numbering system is used, any notion of
numbers in the following sections refers to rational numbers.

7.1 Dynamic Points

A general point is defined as an algebraic data type (18).

> data Point a = Point Id a a (18)

where Point =Type name and constructor of a point
 a = Type of the coordinates
 Id = Unique identifier for a point (Number)

Then Point (RI) defines a static point type with rational
coordinates. A dynamic point type with dynamic rational
coordinates would be defined as Point (CRI), too.
Considering that multiplication and division of points are not
required, the basic functions for point data type are defined as a
class denoted as Points (19).

> class Points p s where (19)
> x, y :: p s → s
> x (Point _ cx _) = cx
> y (Point _ _ cy) = cy

> xy :: s → s → p s
> xy cx cy = Point (-1) cx cy

> (+) :: p s → p s → p s
> (-) :: p s → p s → p s

where Points = Class name and constructor
 xy = Constructs a point from x and y coordinates
 (+) and (-) = Summation and subtraction of points

While most of the functions of class Points are general and have
default definitions, just (+) and (-) functions are overloaded for
static (20) and dynamic (21) point data types.

> instance Points Point a where (20)
> (+) (Point _ x1 y1) (Point _ x2 y2) =
> Point (-1) (x1 + x2) (y1 + y2)

> (-) (Point _ x1 y1) (Point _ x2 y2) =
> Point (-1) (x1 - x2) (y1 - y2)

> instance Points Point (Changing a) where (21)
> (+) = lift2 (+)
> (-) = lift2 (-)

where _ = Any value

The other basic operations such as equality and ordering of
points could be defined similarly (omitted here).

7.2 Connectivity Graph

The proposed connectivity graph is a set of binary relations
between points (22) (Thompson, 1998).

> data Set a = Set [a] (22)
> type Relation a = (a,a)
> type Graph a = Set (Relation a)

where Set =Type constructor of a set
 Relation =Type constructor of a binary relation.
 Graph =Type constructor of a graph

Nodes are also defined as an algebraic data type (23).

> data Node = Node Id ([Id], C, Ctrl, D, MD, RA) (23)

where Node =Type constructor of a node
 Id = Unique identifier for a node which is the same as
id of its corresponding point.
 [Id] = List of connected nodes' ids
 C, Ctrl, D, MD, and RA = Static parameters as
connectivity (C), control (Ctrl), total depth (D), mean depth
(MD), and integration (RA).

Nodes manipulation functions are defined as some set and get
functions (24).

> setNodeId :: Node → RI → Node (24)
> setNodeId (Node id param) id' = Node id' param

> getNodeId :: Node → RI
> getNodeId (Node id _) = id

> getConnections :: Node → [RI]

> setConnections :: Node → [RI] → Node

> getConnectivity, getControl, getTotalDepth,
> getMeanDepth, getIntegrability :: Node → RI

> setConnectivity, setControl, setTotalDepth,
> setMeanDepth, setIntegrability :: Node → RI → Node

In following sections a graph with static numbers is used which
is denoted as Graph RI.

7.3 Static Environment

As mentioned in section 6, the required static environment
defines movement barriers and passages for dynamic activities.
This could be modelled as a set of planar polygons which do
not intersect or include each other (25). Spaces between these
polygons define the passages.

> data Environment a = [Polygon a] (25)

where Environment = Type constructor of an environment

A polygon is defined by its bounding straight line segments
named as Lines. A Line (26) and a polygon (27) are also defined
as algebraic data types, too.

> data Line a = Line (Point a) (Point a) (26)

where Line = Type constructor for a line

> data Polygon a = Polygon [Line a] (27)

where Polygon =Type constructor for a polygon

In general, passages are modelled as paths which guide
movements. A path consists of a set of directed straight lines
meet each other at different times (Figure 6).

Figure 6. A path consists of three directional straight lines at

different times

Then a path could be constructed as a time based conditional
statement of multiple directional straight lines (28).

> path = cond [c1, c2, …] [l1, l2, l3, …] (28)

where cond = Checks a series of conditions finding the first
valid condition and selecting its respective value
 c1 = t0<t<t1
 c2 = t1<t<t2
 l1, l2 and l3= Line equations

The proposed movement of dynamic activities would be
defined by these paths.

7.4 Functions

Most of the defined functions are separated in two parts:
1. functions for component analysis
2. functions for generalization of the component
analysis functions for lists analysis, which are defined by
prefix m

areIntervisible function is one of the basic functions which
checks for existence of intervisibility relation between two
points in an environment (29).

> areIntervisible :: (Bools b, Points Point a) => (29)
 Environment a → Point a → Point a → b

where Bools = Type constructor of Boolean class which
static and dynamic Booleans are overloaded on it

Noting that areIntervisible function uses lines intersection
counting process, further definitions are omitted here.
deriveIntervisibles (30) and deriveRelations (31) functions are
defined for derivation of all intervisibility relations of a point.
Also mDeriveRelations (32) function is defined for generalizing
deriveRelations function over all points of a list.

> deriveIntervisibles:: (Points Point a) => (30)
 Environment a → [Point a] → Point a → [Point a]
> deriveIntervisibles env ps p = filter (areIntervisible env p) ps

> deriveRelations:: (Points Point a) => (31)
 Environment a → [Point a] → Point a → [Relation RI]
> deriveRelations env ps p =
 [(getID p, getID q) | q ← (deriveIntervisibles env ps p)]

> mDeriveRelations:: (Points Point a) => (32)
 Environment a → [Point a] → [[Relation RI]]
> mDeriveRelations env ps = map (deriveRelations env ps) ps

Other functions are also used for flattening the result of
mDeriveRelations function into one list of relations and also for
removing duplicate relations. These functions are omitted here.
Then, cGraph function (33) is defined to construct the
connectivity graph recursively.

> cGraph :: (Points Point a) => (33)
 Environment a → [Point a] → Graph RI
> cGraph env ps = Set (mDeriveRelations env ps)

Graph nodes are generated from the points list using
makeNodes function (34).

> makeNodes :: (Points Point a) => [Point a] → [Node] (34)
> makeNodes [] = []
> makeNodes (p:ps) =
 (Node (pID p) ([],0,0,0,0,0)) : makeNodes ps

t = t0 t = t1

t = t2
t = t3

l1

l2

l3

The morphologic analyses of the graph are defined as follow:
1. Connections list (35 and 36):

> deriveConnections:: Graph RI → Node → Node (35)
> deriveConnections g n = [b | (a,b) ← g, a == (getNodeID n)]
 ++ [a | (a,b) ← g, b == (getNodeID n)]

> mDeriveConnections:: Graph RI → [Node] → [Node] (36)
> mDeriveConnections g ns = map (deriveConnections g) ns

2. Connectivity value (37 and 38):

> connectivity :: Node → Node (37)
> connectivity = setConnectivity.length.getConnections

where length = Returns number of elements in a list.

> mConnectivity:: [Node]→ [Node] (38)
> mConnectivity ns = map connectivity ns

3. Control value (39, 40, and 41):

> control :: Graph RI → Node → Node (39)
> control g n = setControl (sum (map reci.getConnectivity
(findNodes g (getConnections n))) n

where findNodes = Gets ids and returns their relevant nodes.
 reci = Returns a reciprocal number.
 sum = Returns summation of a list of numbers.

> mControl :: Graph RI → [Node] → [Node] (40)
> mControl g ns = map (control g) ns

4. Depth value (41, 42, 43, 44, and 45):

> depth :: Graph RI → Node → Node → RI (41)

Readers are referred to Thompson (1998) (pp. 332-334) for
definition of depth function.

> totalDepth :: Graph RI→ Node → RI (42)
> totalDepth g p =
 setTotalDepth (sum [depth g p q | q ← graph]) p

> mTotalDepth:: Graph RI → [Node] → [Node] (43)
> mTotalDepth g ns = map (totalDepth g) ns

> meanDepth :: Graph RI → Node → Node (44)
> meanDepth g n =
 setMeanDepth ((getTotalDepth n) / (length g – 1))

> mMeanDepth :: Graph RI → [Node] → [Node] (45)
> mMeanDepth g ns = map (meanDepth g) ns

5. Inegrability value (46 and 47):

> integrability :: Graph RI → Node → Node (46)
> integrability g n=
 setIntegrability (2 * (getMeanDepth n - 1) / (length g – 2))

> mIntegrability:: Graph RI → [Node] → [Node] (47)
> mIntegrability g ns = map (integrability g) ns

Then all the morphologic analyses can be composed (48).

> calcParam :: Graph RI → [Node] → [Node] (48)
> calcParam g = ((mIntegrability g).
 (mMeanDepth g).(mTotalDepth g).
 (mControl g).mConnectivity).
 (mDeriveConnections g)

Finally, all functions are composed into a function denoted as
analyseGrid (49).

> analyseGrid :: (Points Point a) => (49)
 Environment a → [Point a] → Changing (Graph RI)
> analyseGrid env ps = ((calcParam g).(makeNodes g))
 where
 g = cGraph env ps

example:
 f = analyseGrid env1 point1
 f 10 will generate and analyse graphs at 10

8. CASE STUDY

The case study is defined as analysing the quality of
overcoming space and time by a simulated public bus
transportation system in a city. This scenario is implemented in
a Haskell compiler known as Hugs.
The city environment is implemented with five static polygons.
Also seven buses are implemented as dynamic activities (Figure
7). Two sample definitions of these buses are presented in (50).

> Activity1 = cond [] [l1_s1] (50)
> l1_s1 = Pt 1 (\ t → 10*t + 100) (\ t → 1440)

> Activity2 = cond [l3_c1] [l3_s1, l3_s2]
> l3_s1 = Pt 3 (\ t → 700) (\ t → 14*t + 600)
> l3_c1 = \ t → t < 50
> l3_s2 = Pt 3 (\ t → 8*t + 300) (\ t → 1320)

While path of Activity1 consists one straight line, path of
Activity2 has two connected straight lines which are controlled
by one temporal condition. These two paths are shown in Figure
7 as dashed arrows.

Figure 7. Simulated and analysed bus transportation system for

the case study

The mentioned analyseGraph function (49) is used in this case
study at 0, 25, 50, 75, and 100. The results are presented in
Figure 7 as graduated box symbols. Also the calculated
integrability value is selected arbitrarily to be shown over time.
As shown, the result could be used for defining areas with
different level of overcoming space and time and then
modifying the paths and time schedules to obtain more effective
coverage. Other spatial and socio-economic analyses are also
possible based on the concepts provided by Space Syntax
theory. For example, a region of high integrability between
times 50 and 70 is shown in Figure 7 by a thick ellipse. This
area could absorb high level of travelling demand during the
mentioned duration and this interpretation could be the basis for
further treatments.

9. CONCLUSIONS

The implementation carried out in this paper determines
validity of the functional approach for time lifting the
topological relationships of convex spaces. The proposed
topological characterization is firstly divided into two
processes: one for deriving analysis units and generate the
topological structure and the other for properties extraction.
While the former process is time lifted the latter is remained
unchanged. Then they are composed as a unique time lifted
process. This approach could be adopted for time lifting of
other topological structures.
Besides, Space Syntax theory conformance with GI concepts
and its consistency to be handled and integrated with GI theory
and likely other spatial theories is shown. Also, the mentioned

specific approach in modelling dynamic activities in local scale
and analysing how effective they overcome space and time
could be widely used, especially for urban related public
services.
The succinct, comprehensible, and testable functions defined in
our implementation represent suitability of functional
programming languages more for evaluating GI theory
hypotheses.
Some considerations are also required about mixed usage of
static and dynamic data and clarification of computation time
and memory growth rates during time lifting. While functional
programming environments try to manage memory
automatically, more specific techniques for controlling memory
allocations and garbage collections are needed. All these imply
utilization of more sophisticated techniques and compilers, like
Glasgow Haskell compiler.

10. REFERENCES

Batty, M., M. Dodge, B. Jiang, and A. Smith, 1998. GIS and
Urban Design, Center for Advanced Spatial Analyses – CASA.
http://www.casa.ucl.ac.uk/urbandesifinal.pdf (accessed Jan,
2005)

Benedikt, M.L., 1979. To take hold of space: isovists and
isovist fields, Environment and Planning B, (6), pp. 47-65.

Brown, M.G., 2001. Design and Value: Spatial Form and the
Economic Failure of a Mall, 3rd International Space Syntax
Symposium, Atlanta, USA.

Jiang B., C., Claramunt, and B., Klarqvist, 2000. An
Integration of Space Syntax into GIS for Modelling Urban
Spaces, International Journal of Applied Earth Observation
and Geoinformation, (2), pp.161-171.

Egenhofer, M.J. and D.M., Mark, 1995. Naïve Geography,
National Center for Geographic Information and Analysis
Publications.

Frank, A.U., 2005. A Theory for Geographic Information
Systems, Unpublished Manuscript.

Frank, A.U., 2003. Ontology for spatio-temporal databases'. In
Spatiotemporal Databases: The Chorochronos Approach.
(Koubarakis, M.e.a., ed.), Lecture Notes in Computer Science,
Berlin, Springer-Verlag, pp: 9-78.

Frank, A.U., 1998. GIS for Politics, GIS Planet 1998, Lisbon,
Portugal, IMERSIV.

Franklin, W.M., 1984. Cartographic Errors Symptomatic of
Underlying Algebra problems, International Symposium of on
Spatial Data Handling, Zurich, Switzerland.

Goodchild, M. F., 1992. Geographical information science.
International Journal of Geographical Information Systems,
6(1), pp. 31–45.

Grenon, P., and B. Smith, 2004. SNAP and SPAN: towards
dynamic spatial ontology. Spatial Cognition and Computation,
4(1).

%

%

%%

%
%

%

%

%

% %
%

%

%

%

%

%
%

% %

%

%

%%

%

% %

%

%

%

%
%

% %

%

%

%

#

#

##

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

1

2

46

7
1

2

3

4

6 7
1

2

3

4

5

6
1

2 3

4

5

6
7

1

2 3

4

5

6

7

1

2
3

4

5

6

Herring, J.R., M.J., Egenhofer, and A.U. Frank, 1990. Using
category theory to model GIS applications, in Proc. 4th
international symposium on spatial data handling, Vol. II,
Zurich.

Hillier, B., and Netto V., 2001. Society Seen Through the
Prism, 3rd International Space Syntax Symposium, Atlanta,
USA.

Hillier, B., 2001. A Theory of the City as Object: How spatial
laws mediate the social construction of urban space, 3rd
International Space Syntax Symposium, Atlanta, USA.

Hillier, B., 1996. Space is the Machine, Cambridge University
Press, Cambridge.

Hillier B., and J. Hanson, 1984. The Social Logic of Space,
Cambridge University Press, Cambridge.

Lynch, K., 1992. The Image of the City, The MIT Press.

Thompson, S., 1998. The Craft of Functional Programming,
Second Edition, Addison – Wesley Press.

