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ABSTRACT: 
 
GI science development has to be served by an effective GI theory. Development of GI theory requires clear characterisation of GI 
domain to demonstrate real world effectively and also provide a framework for delineation of rational hypotheses. This requirement 
is met in recent researches through using mathematics as the basis of GI theory. Axiomatic set theory and formal logic are the 
foundations of this mathematical approach to study the structures, changes, and spaces in GI domain. While hypotheses require to be 
modelled into logical structures and be prepared to be evaluated, computer science is also adopted as another foundation of GI 
theory. One of the recent trends in GI theory development is characterizing the real world as functions and using category theory and 
algebras as the mathematical basis for handling realities and developing hypotheses. Development of unique and integrated basis for 
handling static and dynamic GI concepts is one of the hypotheses which are studied in some of these researches. Their outcomes 
illustrate theoretic feasibility of defining morphisms, known as functors or time liftings, between static and dynamic domains. The 
time lifting approach was evaluated for some GI models, however, more different models still have to be evaluated. This paper 
studied time lifting for a topological characterization of convex spaces in real world which is described by Space Syntax theory. This 
theory illustrates human settlements and societies as a strongly connected space-time relational system between convex spaces. Such 
a system is represented by a connectivity graph. Also some morphologic analyses are defined for deriving the graph's properties 
which illustrate how the space and time are overcome by the relational systems and convex spaces. Investigation of temporality in 
Space Syntax theory has shown that more dynamicity exist among activities in local scale. Then the specific problem of this paper is 
defined as modelling integrated static and dynamic analyses of an activity based scenario in local scale and studying how effective 
these activities overcome space and time. The derived model is implemented for analysing a simulated urban public transportation 
system using a functional programming language known as Haskell. The successful implementation validated the time lifting 
approach for topological models of convex spaces, as the main aim of this paper. Besides, questions are emerged about mixed usage 
of static and dynamic data and level of computation's time and memory growth rates. 
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1. INTRODUCTION 

Is it right that over 80 percent of information has spatial 
factors? Successive introduction of spatial rules as important 
foundations of theories in different sciences strengthens the 
rightness of this claim. For example in architecture science, 
Space Syntax theory is emerged which illustrates the 
importance of constructive roles of space in creating societies 
and proposes that the social construction of space in human 
settlements is mediated by spatial laws. Then it would be 
questioned whether the spatial laws, derived out in different 
sciences independently, are consistent and could they be 
integrated together?  
GI theory is served to provide a foundation to support 
derivation of consistent and integrable spatial laws and theories. 
GI scientists are developing GI theory through formalistic 
utilization of mathematics for studying structures, changes, and 
spaces. This mathematical trend is generally based on axiomatic 
set theory and formal logic. This trend is also accompanied with 
addressing the derived concepts of GI theory in computer 
science. 
 

Then it would be truly supposed that GI concepts which have 
definite mathematical and algebraic structures (like topology) 
could take advantages of GI theory at once, while other GI 
concepts need to be redefined. Time is one of the critical 
concepts have to be redefined in GI theory. Time is inherently 
linked to space (Egenhofer and Mark, 1995); then, provision of 
an integrated basis for dealing with static and dynamic concepts 
is inevitable. 
This paper is following functionalists' approach, especially the 
results provided by Frank and his colleagues, for developing GI 
theory by adopting category theory and algebras for time 
formalization. This formalization is used for evaluation of 
spatio-temporal concepts integration in Space Syntax theory. 
These concepts are resulted from investigation of convex 
spaces' topological relationships in human settlements.  
The definitions illustrated in this paper are implemented into a 
functional programming language known as Haskell. These are 
discriminated by adding a " > " symbol to their beginnings. 
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The paper is composed of 9 sections. In section 2, Space Syntax 
theory is reviewed. Topological properties of this theory and 
their morphologic analyses are described in section 3. Then, 
temporality in Space Syntax theory is investigated in section 4. 
In section 5, formalization of time in GI theory is described. 
Section 6 provides a specific problem definition which is then 
implemented in section 7 and proceeded to a case study in 
section 8. Finally conclusions are provided in section 9. 
 
 

2. SPACE SYNTAX THEORY 

Could our cities be designed according to scientific and rational 
laws? Urban design is the process of giving physical design 
directions to urban growth, conservation and change. It sits at 
the interface between architecture and planning. While 
architecture and planning focus on artistic and socio-economic 
factors, designing emphasises on physical attributes that usually 
restrict its scale of operation to arrangements of streets, 
buildings, and landscapes (Batty et al., 1998). Architecture, 
design, and planning are suffered from lack of scientific 
theories, as existing theories are mostly normative and weakly 
analytical (Hillier, 1996).  
Space Syntax theory is a spatial theory which attempts to 
overcome the mentioned theoretical deficiencies by providing 
means through which we could understand human settlements. 
This theory is originally illustrated by Hillier and Hanson 
(1984) and being used to explore, predict and evaluate the 
likely effects of design alternatives. It is especially a theory and 
method for description of invariants in built spaces. 
Space is a container of relations and interactions (Couclelis, 
1992 cited in Jiang et al., 2001). In other words, space is a 
configurational entity. Space Syntax theory adopts the concept 
of spatial configuration as its foundation for abstraction and 
integration of general properties, structures, and transformations 
in human settlements and societies (Hillier, 1996).  
One of the central concepts of Space Syntax theory is urban 
grid. It is the pattern of public space linking the buildings 
(Hillier, 2001). Considering the strong role of urban grids in 
creating living cities, their relations with movement are usually 
investigated. Urban grids are defined as static core elements of 
urban systems strongly influence the long term dynamicity of 
urban systems and movement, as the strong force that holds the 
whole urban system together (Hillier, 2001). Then the relational 
systems of societies are strongly connected space-time 
relational systems which their individual relations are space-
time relations and events / activities (Hillier and Netto, 2001).  
Based on these outcomes, Space Syntax theory provides its 
organic definition for a society as an evolutionary abstraction 
imposed on space-time reality. In this society, space is acted as 
an inverted genotype. It means that the required information to 
reproduce cultural patterns of space is found in the spatial 
configurations themselves as relations / interactions. Individuals 
who make up such an organic society (e.g. built areas and 
activities) are clearly well-defined space-time things and the 
spaces between individuals are filled up or overcome by the 
space-time relational systems. These imply movement in 
societies (Hillier and Netto, 2001). 
Then it is depicted that the social construction of space in 
human settlements is mediated by two kinds of spatial laws: 
those by which different ways of placing buildings gave rise to 
different spatial configurations (local and conservative); and 
those through which different spatial configurations create 
different patterns of co-presence amongst people through their 
effect on movement (global and generative) (Hillier, 2001). 
This conclusion conforms to viewpoint of cognitive perception: 

space could be considered at two scales: large and small 
(Egenhofer and Mark, 1995). Large scale space is beyond 
human perception and cannot be perceived from a single point; 
while small-scale space is presumably larger than the human 
body, but can be perceived from a single vantage point (Jiang et 
al., 2000). In Space Syntax theory, residential and cultural 
factors, which are variants, dominate local scale and 
commercial and micro-economic factors, which are invariants, 
form global scale.  
Dealing with invariants, Space Syntax theory introduces a 
universal pattern which could be extracted from the space-time 
relational systems in global scale. It is known as deformed 
wheel pattern (Hillier, 2001). This pattern is firstly used for 
explanation of movement. Also the effect of variants on a 
society are analyzed studying the level of deformation occurred 
in its deformed wheel pattern. 
In short, Space Syntax theory defines the relation of space and 
society as a two way generic and systematic relation (Hillier, 
2001). Cities are defined here as a transformation of space-time 
and a transformation of society (Hillier and Netto, 2001). This 
theory generates topological formal models for space-time 
relational systems of convex spaces in human settlements. 
These systems are represented as connectivity graphs and 
equipped with effective methods for analyzing their 
morphologic properties which are described in Section 3.  
 
 
3. TOPOLOGICAL RELATIONSHIP OF CONVEX 

SPACES IN SPACE SYNTAX THEORY 

The mentioned graph representations of societies' relational 
systems are generated as follow: 

1. Spatial decomposition of spatial configuration into 
elementary units of analysis: bounded spaces, convex 
spaces and axial lines. These are defined as (Brown, 2001): 
− Bounded spaces (typical enclosable rooms) usually 

correspond to functional use designations (Figure 1). 
− Convex spaces identify the extent of spatial 

decomposition and usually correspond with 
privatization and localization of space. (Figure 1.a). 

− Axial lines as straight lines which identify the extent 
of spatial continuity and usually correspond with 
flows and globalization of space. They connect all 
incidences of convex spaces based on their inter-
visibility. (Figure 1.b). 

 
 

 
Figure 1.  Example of analysis units' extraction in Space Syntax 

theory for a market (Brown, 2001) 
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2. Representing derived analysis units and their 
connections as a connectivity graph in which its nodes and 
links are respectively the analysis units and their 
connections. These graphs are usually big, shallow, non-
dendritic, highly integrated, and everywhere ringy (with a 
large number of cycles) rather than tree-like (Hillier and 
Netto, 2001). Jiang et. al (2000) illustrates three different 
representations for a connectivity graph depending on the 
degree of linearity in environment. These are: 
− Relatively linear / axial representation, where this 

linear property represents the fact that the built 
environment is relatively dense, so that the free space 
is stretched in one orientation at most points (e.g. a 
city, a town, a village or a neighbourhood) (Figure 2). 
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Figure 2.  Axial representation (Jiang et al., 2000) 

 
 

− Non-linear / convex representation, where the free 
space is partitioned into finite number of convex 
spaces (e.g. internal layout of a building) (Figure 3). 
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Figure 3.  Convex representation (Jiang et al., 2000) 

 
 

− Non-linear but with more precise spatial presentation / 
grid representation, where the free space is partitioned 
into finite number of points which their visual fields 
are studied (Figure 4). Visual field is the space wholly 
visible from a single vantage point. It is based on the 
notion of isovist (Benedikt, 1979). 

 
 

 
Figure 4.  Grid representation (Jiang et al., 2000) 

 
 
3. Deriving the graphs morphologic properties: 
connectivity, control value, depth, and integrability. These 
are defined as follow (Jiang et. al, 2000, Brown, 2001): 
− The connectivity value is the number of immediate 

neighbours of nodes (1). 
 
 

  Ci = k    (1) 
 
 
 where Ci = Connectivity of ith node 
   k = Immediate neighbours 
 

− The control value of a node expresses the degree to 
which the node controls access to its immediate 
neighbours, taking into account the number of 
alternative connections of these neighbours (2). 
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 where ctrli = Control value of ith node 
   k = Connected nodes to ith node 
  Cj = Connectivity of jth node 
 

− The depth value is the smallest number of steps from a 
node to the others. It is defined as total depth and 
mean depth values (3). 

 
 
  ∑

=

=
n

j
iji dD

1

    (3) 

  MDi = Di/(n-1) 
 
 
 where Di = Total depth value of ith node 
   dij = shortest path between ith and jth node 
  n = Number of nodes 
   MDi = Mean depth value of ith node 

 
− Integration value is the degree to which a node is 

integrated or segregated from the system. A node is 
said to be more integrated if all the other nodes can be 
reached after traversing a small number of intervening 
nodes and less integrated if the necessary number of 
intermediate nodes increases. The integration of a 
node is measured similar to relative asymmetry as the 
average depth of the node to all other nodes (4). 

 
 
  RAi = 2(MDi – 1)/(n-2)   (4) 
 
 
 where RAi = Relative asymmetry value of ith node 

 
These morphologic analyses are carried out targeting each 
analysis units or nodes of the graph against the others. This 
could be interpreted as re-arranging the structure of graph based 
on a target node. This process is defined as creating a justified 
graph (j-graph) for a node. J-graphs are viewpoints of 
individuals to society. Justification of a graph is done by putting 
the target node at the lowest / root position, where it can be 
distinguished explicitly and from which the whole graph can be 
seen. The structures of j-graphs are used for visual 
interpretation of target nodes properties. While all j-graphs and 
the main graph of society are homeomorphic, Space Syntax 
theory concludes that individual and society are different ways 
of looking at the same thing (Hillier and Netto, 2001). 



 

4. TIME IN SPACE SYNTAX THEORY 

Temporality in Space Syntax theory emerges from changes 
caused under the notion of movement which is discussed in 
section 2. Time here is investigated in two levels of granularity: 
global and local. During the life of a city space, it changes 
slowly (global scale) and its related activities (interactions and 
co-presence) change rapidly (local scale). 
 
4.1 Time in Global Scale 

City design is a temporal art. However this temporality can 
rarely be explained and controlled as limited sequences. 
Moreover the temporal sequence of cities can be reversed, 
interrupted, abandoned, and cut across (Lynch, 1986). It is 
similar to temporality in biology (Frank, 2005). Space Syntax 
theory defines built environments as organic structures too 
(Section 2). Therefore, movement at global scale is known as 
general movement which is highly governed by invariant rules 
like commercial and micro-economic rules (Hillier, 2001). 
While that Space Syntax theory deals with space-time as a 
genotype (Section 2), the main spatio-temporal question in 
global scale would be how a society is reproduced through time 
by being realized in space (Hillier and Netto, 2001). The 
abstraction emerges here is due to dominance of knowing which 
structures are reproduced and overcome space, not dealing with 
the structure itself. Then a society is defined as a continuous 
space-time entity (Hillier and Netto, 2001). 
This notion of temporality and slow changes is adopted with all 
three kinds of environment's representation (Section 3), 
especially, axial and convex ones.  
 
4.2 Time in Local Scale 

In local scale, we face with discrete and freely mobile 
individuals who carry out activities. No activity per se 
generates fast changes and immediate new patterns of space, 
but they have a certain distribution of demands on co-presence 
and global movement. When assessing the impact of new 
activities on space, what we need to compare is not so much the 
contents of these activities but the range of demands they are 
likely to make on co-presence (Hiller and Netto, 2001). 
The main question of space and time here is how independent 
activities of large number of individuals / agents in different 
locations create the overall pattern of cities? Two main 
specifications of these activities are (Hiller and Netto, 2001): 

1. They are movable and do not accumulate into space-
time to create larger forms  
2. They are governed by social rules and conventions. 

In this scale temporality could be investigated more effectively 
in the grid representation of environment where grid points 
could represent positions of activities in space and time. Then 
the concepts of moving objects could be adopted in Space 
Syntax theory for modelling dynamic activities, their 
interactions, and co-presences. 
 
 

5. TIME IN GI SCIENCE 

Space and society change each other. While any changes is due 
to time and change in socio-economic or natural environment 
attracts the attention of societies (esp. the politicians) (Frank, 
1998), we should try to effectively formalize and implement 
time in GIS. Time and space are inherent, fundamental and 
different dimensions of reality in which people live (Frank, 
2005; Egenhofer and Mark, 1995).  

Despite many efforts and researches carried out for handling 
space and time, these two did not advance co-ordinately. 
Effective handling of time is still a controversial and 
preliminary topic in GI science and technology. Besides lack of 
effective integration approaches, GI scientists enumerate 
temporal deficiencies as one of the main troublesome issues of 
GI science and technology (Frank, 2005). Time handling 
problems could be detailed as follow:  

• Lack of a comprehensive and basic spatio-temporal 
ontology (Frank, 2003).  

• Dealing with time as a discrete or partial continuous 
property of world while our unique reality (space and 
time) is continues and governed by differentiable laws 
(Frank, 2003). 

• Dominance of analytical approaches, suffered from 
limitation of computer numbering systems. 

• Underestimation of common behaviours of models 
which are used in GI domain (e.g. network, object and 
field) that resulted in creation of context-based 
temporal viewpoints (Herring et al., 1990). 

A general reason for these deficiencies is lack of effective GI 
theory. GI theory, like theories in other sciences, would consist 
of a formal language and rules concerning valid (simple) 
relationships and facts within the language (Frank, 2005). This 
theory would be broad and comprehensive enough to cover all 
domains of GI science and technology.  
After about one decade from introduction of GI science 
(Goodchild, 1992) and dealing with GI theory development, 
recently, it is hypothesized that mathematics can provide the 
required basis of GI theory. Mathematics is treated in GI theory 
as study of structures, changes, and spaces (further than figures 
and numbers) and used following a formalistic approach, which 
is based on axiomatic set theory and formal logic. This 
treatment is accompanied with computer science adoption as 
the basis for hypotheses implementation and evaluation. 
The mentioned trend in GI theory is followed in some of the 
recent advancements like:  

• Development of the basic form ontology for space 
(SNAP) and time (SPAN) by Grenon and Smith 
(2004) and their colleagues. 

• Development of multi-tier ontology by Frank (2003). 
• Development of functional approaches for GI on the 

basis of category theory by Herring et al. (1991), 
Frank (2005) and his colleagues. 

 
5.1 Functional Approach to GI Theory 

How are the interactions in complex real world carrying out 
simply? The general answer of functionalists is existence of 
abstraction interfaces which absorb complexities of real worlds. 
Then the resulted abstract real world could be interacted 
extensionally, free from any computation. The entities here 
would be relations in real world, or more properly functions.  
This viewpoint is employed in different sciences, especially 
social sciences, philosophy, and architecture. In GI science, one 
of the functional approaches for definition of GI related 
interactions is provided by Frank (2003) as the closed loop of 
semantics. He described interactions as composition of a series 
of functions carry out by agents in real world (Figure 4). These 
functions could be expressed as (5): 
 
 
 Reality→Observation→Modeling→Act→Reality (5) 
 
 



 

 
Figure 4.  Closed loop of semantics 

 
The commutative version of the closed loop of semantics is as 
follow (6): 
 
 
                           Reality   →   g   →  Reality  (6) 
                               ↓                             ↑ 
                     Observation →   g'  →   Act 
 
 
where  g = Processes/models in real world 
 g' = Processes/models in agent's mind 
 
Input to observation function and output from act function are 
the relations / functions from real world. 
What is denoted here as g' function is a functional 
representation of a GIS. This function could be defined as 
composition of a series of functions (7), too, like what is 
presented for TIGRIS GIS by Herring et al. (1989). 
 
 
g' : External Modelling → Conceptual Modelling→  (7) 
 Logical Modelling → Physical Modelling 
 
 
Category theory is introduced by Herring et al. (1989) as the 
mathematical basis which could support the functional 
representation of GI interactions. This is a mathematical theory 
that abstractly (free from semantics) deals with mathematical 
structures and relationships between them. It is an attempt to 
capture what is commonly found in various classes of related 
mathematical structures. Fundamental concepts of category 
theory are categories and functors. 
A category is a collection of primitive element types, a set of 
operations upon those types, and an operator algebra which is 
capable of expressing the interaction between operators and 
elements (Herring et al., 1989). Considering category C, 
element types are objects of category (obj(C)), operations are 
morphisms preserve structures known as homomorphisms 
(hom(C)), and operator algebra is composition of morphisms. 
The associativity of morphisms' composition and existence of 
identity morphism are axioms of a category. For example field 
category consists of fields as objects and field homomorphism 
as its morphisms (8). 
 
 
 m : G → H    (8) 
 m(u + v) = m(u) ++ m(v) 
 m(u * v) = m(u) ** m(v) 
 
 
where G and H = Fields like (G, +, *) and (H, ++, **) 
 m = Homomorphism function 
 u and v = Members of G 

A functor is a morphism which associates elements and 
operations from one category to another and preserves the 
operator algebra (Herring et al., 1989). Functor F from category 
C to category D associates to each object x in C an object F(x) 
in D and to each morphism f : x → y in C a morphism  
F(f) : F(x) → F(y). It also holds identity and composition 
properties.  
Then a category is itself a type of mathematical structure that its 
structure is preserved by functors. This means that category 
theory can be described in itself. While many mathematical 
theories attempt to study a particular type of structure just by 
relating it to another simpler and better understood structure, 
category theory used to take ideas to another simpler or even 
more complex ones (two-way) by studying the structures and 
morphisms. For example, our approach in moving from static to 
dynamic domain results in more complixity. 
By defining all GI concepts as formal mathematical structures 
and their morphisms, GI theory would be formed as a collection 
of categories. Then any kinds of transformations and 
integrations of GI concepts to each other would be possible, 
using morphisms within and among categories. 
 
5.2 Functional Formalization of Time  

Considering Cs and Cd as two categories which carry one kind 
of mathematical structure in their static and dynamic domains 
respectively, a functor from the static category to the dynamic 
one can lift us to temporal domain. This functor will take a 
function that can be used for static data and generate a function 
could be used for dynamic data. This kind of transformation 
from static to dynamic domain is usually mentioned as time 
lifting. While it is possible to define a unique time lift function, 
for simplicity, different time lift functions are illustrated here 
(9), using lambda calculus syntax, for functions with 0 to 2 
parameters. 
 
 
> lift0 a = \ t → a     (9) 
> lift1 op a = \ t → op (a t) 
> lift2 op a b = \ t → op (a t) (b t) 
 
 
where lift0, lift1, and lift2 = Time lift functions 
 op = Input function  
 a and b = Inputs for op function 
 t = Time parameter 
 \ = Lambda symbol 
 
For example time lifting of a two parameter function could be 
done using the lift2 function (10). 
 
 
 f : a → b → c    (10) 
 
 g : (t→a) →(t→b) →(t→c) 
 g = lift2 f 
 
 
where a, b, and c = Static types 
 (t→a) and (t→b) = Dynamic input functions 
 (t→c) = Dynamic output functions 
example:   if f = (+) then  
  f 1 2 = 1 + 2 = 3  
  g (t + 1) (2t) = 3t + 1  
  g 0 = 1; g 1 = 4; g 2 = 7 
 



 

Then any type of values could be structured as a dynamic one 
being defined as a function from time to the value (11) 
 
 
> Changing v = Time → v    (11) 
 
 
where v = Any type  
 Time = Time parameter 
 
These dynamic types could be used in functions, like their static 
counterparts, based on polymorphism. However, this depends 
upon feasibility of instantiating the dynamic types for classes 
used by static types. This process is known as overloading or 
ad-hoc polymorphism. After overloading of dynamic types, 
further definition of functions could be used for both static and 
dynamic types.  
 
5.3 Analytic Issues – Computer Numbering System  

As mentioned in section 5, two problems for handling time in 
GI science are treating time as a discrete entity and dominance 
of analytical approaches. These are outcomes of computers' 
float numbering systems bounded-ness. It means that just 
limited number of digits can be used for integer and floating 
parts of a number. It causes overflowing and round off errors 
which subsequently result in continuity problem.  
The computing environments supporting lazy evaluation has 
solved the problem of overflowing extensionally by validating 
definition of infinite series of numbers. Lazy evaluation means 
extensional computation of statements and just evaluating 
required parts of the statements (12).  
 
 
> naturals = [1, 2 ..]    (12) 
> n_5 = take 5 naturals = [1,2,3,4,5] 
 
 
where naturals = Infinite series of natural numbers  
 
The general solution for round off error problem, which is 
proposed by Franklin (1984), is utilization of rational 
numbering system. A rational number is a ratio of two integers 
usually written as a/b where b is not zero. The set of all rational 
numbers is denoted by Q which is a linear, dense subset of real 
numbers, and totally ordered. Being a dense subset means that 
between any two rationals sits another one (in fact infinitely 
many other ones).  
So what is the problem of substituting rational field numbering 
systems for float numbering systems of computers? Rational 
numbers are structured types (like records) and the computing 
environment which supposed to used them have to be able two 
overload numerical operators and functions for structured data 
types. While overloading is just feasible in computing 
environments conforms to object oriented architecture, the 
existing computing environments are either imperative or do 
not support overloading for structured data types, especially for 
operators (like =, +, and *). 
One of the major outcomes of using rational numbering systems 
would be elimination of error generation and propagation in GI 
algorithms due to round off error.  
By defining a rational type as Ratio Integer, its temporal 
counterpart could be defined (13). 
 
 
> Changing (Ration Integer) = Time → (Ratio Integer) (13) 

In continue the following synonyms (14) will be used: 
 
 
> type RI = Ratio Integer    (14) 
> type CRI = Changing (Ratio Integer) 
 
 
The static and dynamic rational types are overloaded over a 
Field class contains basic numeric operators (15). 
 
 
> class Field a where    (15) 
>  (+),(-),(*),(/) : a → a → a 
 
 
Overloaded instances for static and dynamic types are: 
 
 
> instance Field (RI) where    (16) 
> … 
 
> instance Field (CRI) where 
> (+) = lift2 (+) 
> (-) = lift2 (-) 
> (*) = lift2 (*) 
> (/) = lift2 (/) 
 
 
Then any functions, which use these basic operators, would be 
valid for both static and dynamic types (17). 
 
 
> dm : (Field a) ═> a → a → a   (17) 
> dm a b = (a + b) * (a – b) 
 
 
example: 
>  dm 1/2 2/3 
>  dm (1/2t) (2/3t) 
 
 

6. PROBLEM DEFINITION 

Considering the previously mentioned issues, the aim of this 
paper can be restated as "implementing integrated analyses for 
static and dynamic topological relationships of convex spaces in 
Space Syntax theory using the time lifting approach". Dealing 
with this, the grid representation is selected as the basis of 
analyses (Section 3). In grid representation rather simpler 
approach for deriving convex spaces is provided than the two 
other representations, as the vantage points are predefined and 
finite (set of regular grid points). These points can be proposed 
as potential incidences of convex spaces and their linkages can 
be derived by checking their intervisibilities.  
Moreover, the grid representation supports more rapid 
dynamicity, movement, and changes of activities in local scale 
(Section 4.2). Then our problem is limited to intervisibility 
analysis in a definite and finite point set which represents 
positions of static and dynamic activities. The intervisibility 
analysis would be carried out within an underlying static 
environment. This static environment consists of passages (e.g. 
streets) and barriers (e.g. buildings) which enable or disable 
movement and intervisibility. 
The resulted connectivity graph will be composed of positions 
of static and dynamic activities as nodes and their intervisibility 
relations as links.  



 

It is expected that this approach could support analyses of 
different kinds of dynamic activities, especially public services 
in cities (e.g. transportation, safety, and security), in regards 
with evaluating how effective they interact, overcome and 
cover space and time.  
 
 

7. IMPLEMENTATION 

The required components for implementation are defined as 
follow: 

1. dynamic points 
2. connectivity graph 
3. static environment 
4. functions 

While rational numbering system is used, any notion of 
numbers in the following sections refers to rational numbers. 
 
7.1 Dynamic Points 

A general point is defined as an algebraic data type (18). 
 
 
> data Point a = Point Id a a    (18) 
 
 
where Point =Type name and constructor of a point 
 a = Type of the coordinates 
 Id = Unique identifier for a point (Number) 
 
Then Point (RI) defines a static point type with rational 
coordinates. A dynamic point type with dynamic rational 
coordinates would be defined as Point (CRI), too.  
Considering that multiplication and division of points are not 
required, the basic functions for point data type are defined as a 
class denoted as Points (19). 
 
 
> class Points p s where    (19) 
> x, y :: p s → s 
> x (Point _ cx _) = cx 
> y (Point _ _ cy) = cy 
 
> xy :: s → s → p s 
> xy cx cy = Point (-1) cx cy 
 
> (+) :: p s → p s → p s 
> (-) :: p s → p s → p s 
 
 
where Points = Class name and constructor 
 xy = Constructs a point from x and y coordinates 
 (+) and (-) = Summation and subtraction of points 
 
While most of the functions of class Points are general and have 
default definitions, just (+) and (-) functions are overloaded for 
static (20) and dynamic (21) point data types.  
 
 
> instance Points Point a where   (20) 
> (+) (Point _ x1 y1) (Point _ x2 y2) =  
>   Point (-1) (x1 + x2) (y1 + y2)  
 
> (-) (Point _ x1 y1) (Point _ x2 y2) =  
>   Point (-1) (x1 - x2) (y1 - y2)  
 

 
> instance Points Point (Changing a) where  (21) 
> (+) = lift2 (+) 
> (-) = lift2 (-) 
 
 
where _ = Any value 
 
The other basic operations such as equality and ordering of 
points could be defined similarly (omitted here). 
 
7.2 Connectivity Graph 

The proposed connectivity graph is a set of binary relations 
between points (22) (Thompson, 1998).  
 
 
> data Set a = Set [a]    (22) 
> type Relation a = (a,a) 
> type Graph a = Set (Relation a) 
 
 
where Set =Type constructor of a set 
 Relation =Type constructor of a binary relation. 
 Graph =Type constructor of a graph 
 
Nodes are also defined as an algebraic data type (23). 
 
 
> data Node = Node Id ([Id], C, Ctrl, D, MD, RA) (23) 
 
 
where Node =Type constructor of a node 
 Id = Unique identifier for a node which is the same as 
id of its corresponding point. 
 [Id] = List of connected nodes' ids 
 C, Ctrl, D, MD, and RA = Static parameters as 
connectivity (C), control (Ctrl), total depth (D), mean depth 
(MD), and integration (RA). 
 
Nodes manipulation functions are defined as some set and get 
functions (24). 
 
 
> setNodeId :: Node → RI → Node   (24) 
> setNodeId (Node id param) id' = Node id' param 
 
> getNodeId :: Node → RI 
> getNodeId (Node id _) = id 
 
> getConnections :: Node → [RI] 
 
> setConnections :: Node → [RI] → Node 
 
> getConnectivity, getControl, getTotalDepth, 
> getMeanDepth, getIntegrability :: Node → RI 
 
> setConnectivity, setControl, setTotalDepth,  
> setMeanDepth, setIntegrability :: Node → RI → Node 
 
 
In following sections a graph with static numbers is used which 
is denoted as Graph RI. 
 



 

7.3 Static Environment 

As mentioned in section 6, the required static environment 
defines movement barriers and passages for dynamic activities. 
This could be modelled as a set of planar polygons which do 
not intersect or include each other (25). Spaces between these 
polygons define the passages. 
 
 
> data Environment a = [Polygon a]   (25) 
 
 
where Environment = Type constructor of an environment 
 
A polygon is defined by its bounding straight line segments 
named as Lines. A Line (26) and a polygon (27) are also defined 
as algebraic data types, too. 
 
 
> data Line a = Line (Point a) (Point a)  (26) 
 
 
where Line = Type constructor for a line 
 
 
> data Polygon a = Polygon [Line a]   (27) 
 
 
where Polygon =Type constructor for a polygon 
 
In general, passages are modelled as paths which guide 
movements. A path consists of a set of directed straight lines 
meet each other at different times (Figure 6). 
 
 

 
Figure 6.  A path consists of three directional straight lines at 

different times 
 
Then a path could be constructed as a time based conditional 
statement of multiple directional straight lines (28). 
 
 
> path = cond [c1, c2, … ] [l1, l2, l3, …]  (28) 
 
 
where cond = Checks a series of conditions finding the first 
valid condition and selecting its respective value 
 c1 = t0<t<t1 
 c2 = t1<t<t2 
 l1, l2 and l3= Line equations 
 
The proposed movement of dynamic activities would be 
defined by these paths. 
 
 
 

7.4 Functions 

Most of the defined functions are separated in two parts: 
1. functions for component analysis 
2. functions for generalization of the component 
analysis functions for lists analysis, which are defined by 
prefix m 

 
areIntervisible function is one of the basic functions which 
checks for existence of intervisibility relation between two 
points in an environment (29). 
 
 
> areIntervisible :: (Bools b, Points Point a) =>   (29) 
  Environment a → Point a → Point a → b  
 
where Bools = Type constructor of Boolean class which 
static and dynamic Booleans are overloaded on it 
 
Noting that areIntervisible function uses lines intersection 
counting process, further definitions are omitted here. 
deriveIntervisibles (30) and deriveRelations (31) functions are 
defined for derivation of all intervisibility relations of a point. 
Also mDeriveRelations (32) function is defined for generalizing 
deriveRelations function over all points of a list. 
 
 
> deriveIntervisibles:: (Points Point a) =>   (30) 
          Environment a → [Point a] → Point a → [Point a] 
> deriveIntervisibles env ps p = filter (areIntervisible env p) ps 
 
 
> deriveRelations:: (Points Point a) =>   (31) 
          Environment a → [Point a] → Point a → [Relation RI] 
> deriveRelations env ps p =  
     [(getID p, getID q) | q ← (deriveIntervisibles env ps p)] 
 
 
> mDeriveRelations:: (Points Point a) =>   (32) 
          Environment a → [Point a] → [[Relation RI]] 
> mDeriveRelations env ps = map (deriveRelations env ps) ps 
 
 
Other functions are also used for flattening the result of 
mDeriveRelations function into one list of relations and also for 
removing duplicate relations. These functions are omitted here.  
Then, cGraph function (33) is defined to construct the 
connectivity graph recursively. 
 
 
> cGraph :: (Points Point a) =>    (33) 
 Environment a → [Point a] → Graph RI 
> cGraph env ps = Set (mDeriveRelations env ps) 
 
 
Graph nodes are generated from the points list using 
makeNodes function (34). 
 
 
> makeNodes :: (Points Point a) => [Point a] → [Node] (34) 
> makeNodes [] = [] 
> makeNodes (p:ps) =  
 (Node (pID p) ([],0,0,0,0,0)) : makeNodes ps 
 
 
 

t = t0 t = t1 

t = t2 
t = t3 

l1 

l2 

l3 



 

The morphologic analyses of the graph are defined as follow:  
1. Connections list (35 and 36): 

 
 
> deriveConnections:: Graph RI → Node → Node (35) 
> deriveConnections g n = [b | (a,b) ← g, a == (getNodeID n)] 
 ++ [a | (a,b) ← g, b == (getNodeID n)] 
 
> mDeriveConnections:: Graph RI → [Node] → [Node] (36) 
> mDeriveConnections g ns = map (deriveConnections g) ns 
 
 

2. Connectivity value (37 and 38): 
 
 
> connectivity :: Node → Node   (37) 
> connectivity = setConnectivity.length.getConnections 
 
 
where length = Returns number of elements in a list. 
 
> mConnectivity:: [Node]→ [Node]   (38) 
> mConnectivity ns = map connectivity ns 
 
 

3. Control value (39, 40, and 41): 
 
 
> control :: Graph RI → Node → Node  (39) 
> control g n = setControl (sum (map reci.getConnectivity 
(findNodes g (getConnections n))) n 
 
 
where findNodes = Gets ids and returns their relevant nodes.  
 reci = Returns a reciprocal number. 
 sum = Returns summation of a list of numbers. 
 
 
> mControl :: Graph RI → [Node] → [Node]  (40) 
> mControl g ns = map (control g) ns 
 
 

4. Depth value (41, 42, 43, 44, and 45): 
 
 
> depth :: Graph RI → Node → Node → RI  (41) 
 
 
Readers are referred to Thompson (1998) (pp. 332-334) for 
definition of depth function. 
 
 
> totalDepth :: Graph RI→ Node → RI  (42) 
> totalDepth g p =  
       setTotalDepth (sum [depth g p q | q ← graph]) p 
 
> mTotalDepth:: Graph RI → [Node] → [Node]  (43) 
> mTotalDepth g ns = map (totalDepth g) ns 
 
 
> meanDepth :: Graph RI → Node → Node  (44) 
> meanDepth g n =  
       setMeanDepth ((getTotalDepth n) / (length g – 1)) 
 
> mMeanDepth :: Graph RI → [Node] → [Node] (45) 
> mMeanDepth g ns = map (meanDepth g) ns 

5. Inegrability value (46 and 47): 
 
 
> integrability :: Graph RI → Node → Node  (46) 
> integrability g n=  
         setIntegrability (2 * (getMeanDepth n - 1) / (length g – 2)) 
 
> mIntegrability:: Graph RI → [Node] → [Node] (47) 
> mIntegrability g ns = map (integrability g) ns 
 
 
Then all the morphologic analyses can be composed (48). 
 
 
> calcParam :: Graph RI → [Node] → [Node]  (48) 
> calcParam g = ((mIntegrability g). 
  (mMeanDepth g).(mTotalDepth g). 
  (mControl g).mConnectivity). 
  (mDeriveConnections g) 
 
 
Finally, all functions are composed into a function denoted as 
analyseGrid (49). 
 
 
> analyseGrid :: (Points Point a) =>    (49) 
 Environment a → [Point a] → Changing (Graph RI) 
> analyseGrid env ps = ((calcParam g).(makeNodes g)) 
 where 
  g = cGraph env ps 
 
 
example: 
 f = analyseGrid env1 point1 
 f 10 will generate and analyse graphs at 10 
 
 

8. CASE STUDY 

The case study is defined as analysing the quality of 
overcoming space and time by a simulated public bus 
transportation system in a city. This scenario is implemented in 
a Haskell compiler known as Hugs.  
The city environment is implemented with five static polygons. 
Also seven buses are implemented as dynamic activities (Figure 
7). Two sample definitions of these buses are presented in (50). 
 
 
> Activity1 = cond [] [l1_s1]    (50) 
> l1_s1 = Pt 1 (\ t → 10*t + 100) (\ t → 1440) 
 
> Activity2 = cond [l3_c1] [l3_s1, l3_s2]  
> l3_s1 = Pt 3 (\ t → 700) (\ t → 14*t + 600) 
> l3_c1 = \ t → t < 50 
> l3_s2 = Pt 3 (\ t → 8*t + 300) (\ t → 1320) 
 
 
While path of Activity1 consists one straight line, path of 
Activity2 has two connected straight lines which are controlled 
by one temporal condition. These two paths are shown in Figure 
7 as dashed arrows. 
 
 



 

 
 
Figure 7.  Simulated and analysed bus transportation system for 

the case study 
 
The mentioned analyseGraph function (49) is used in this case 
study at 0, 25, 50, 75, and 100. The results are presented in 
Figure 7 as graduated box symbols. Also the calculated 
integrability value is selected arbitrarily to be shown over time.  
As shown, the result could be used for defining areas with 
different level of overcoming space and time and then 
modifying the paths and time schedules to obtain more effective 
coverage. Other spatial and socio-economic analyses are also 
possible based on the concepts provided by Space Syntax 
theory. For example, a region of high integrability between 
times 50 and 70 is shown in Figure 7 by a thick ellipse. This 
area could absorb high level of travelling demand during the 
mentioned duration and this interpretation could be the basis for 
further treatments. 
 
 

9. CONCLUSIONS 

The implementation carried out in this paper determines 
validity of the functional approach for time lifting the 
topological relationships of convex spaces. The proposed 
topological characterization is firstly divided into two 
processes: one for deriving analysis units and generate the 
topological structure and the other for properties extraction. 
While the former process is time lifted the latter is remained 
unchanged. Then they are composed as a unique time lifted 
process. This approach could be adopted for time lifting of 
other topological structures. 
Besides, Space Syntax theory conformance with GI concepts 
and its consistency to be handled and integrated with GI theory 
and likely other spatial theories is shown. Also, the mentioned 

specific approach in modelling dynamic activities in local scale 
and analysing how effective they overcome space and time 
could be widely used, especially for urban related public 
services.  
The succinct, comprehensible, and testable functions defined in 
our implementation represent suitability of functional 
programming languages more for evaluating GI theory 
hypotheses.  
Some considerations are also required about mixed usage of 
static and dynamic data and clarification of computation time 
and memory growth rates during time lifting. While functional 
programming environments try to manage memory 
automatically, more specific techniques for controlling memory 
allocations and garbage collections are needed. All these imply 
utilization of more sophisticated techniques and compilers, like 
Glasgow Haskell compiler. 
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